Tetris is Hard, Even to Approximate

Erik D. Demaine, Susan Hohenberger, and David Liben-Nowell

Laboratory for Computer Science, Massachusetts Institute of Technology
200 Technology Square, Cambridge, MA 02139, USA
{edemaine, sthohen,dln}@theory.lcs.mit.edu

Abstract. In the popular computer game of Tetris, the player is given
a sequence of tetromino pieces and must pack them into a rectangular
gameboard initially occupied by a given configuration of filled squares;
any completely filled row of the gameboard is cleared and all pieces
above it drop by one row. We prove that in the offline version of Tetris,
it is NP-complete to maximize the number of cleared rows, maximize the
number of tetrises (quadruples of rows simultaneously filled and cleared),
minimize the maximum height of an occupied square, or maximize the
number of pieces placed before the game ends. We furthermore show
the extreme inapproximability of the first and last of these objectives
to within a factor of p'~¢, when given a sequence of p pieces, and the
inapproximability of the third objective to within a factor of 2—¢, for any
g > 0. Our results hold under several variations on the rules of Tetris,
including different models of rotation, limitations on player agility, and
restricted piecesets.

1 Introduction

Tetris [13] is a popular computer game that was invented by mathematician
Alexey Pazhitnov in the mid-1980s. By 1988, just a few years after its invention,
Tetris was already the best-selling game in the United States and England.
Over 50 million copies have been sold worldwide. (Incidentally, Sheff [12] gives a
fascinating account of the tangled legal debate over the profits, ownership, and
licensing of Tetris.)

In this paper, we embark on the study of the computational complexity of
playing Tetris. We consider the offline version of Tetris, in which the sequence
of pieces that will be dropped is specified in advance. Our main result is that
playing offline Tetris optimally is NP-complete, and furthermore is highly inap-
proximable.

The game of Tetris. Concretely, the game of Tetris is as follows. (We give precise
definitions in Section 2, and discuss some variants on these definitions in Sec-
tion 6.) We are given an initial gameboard, which is a rectangular grid with some
gridsquares filled and some empty. (In typical Tetris implementations, the game-
board is 20-by-10, and “easy” levels have an initially empty gameboard, while
“hard” levels have non-empty initial gameboards, usually with the gridsquares
below a certain row filled independently at random.)

A sequence of tetrominoes—see Fig-
ure 1—is generated, typically probabilis- E lﬂ &l
tically; the next piece appears in the mid-
dle of the top row of the gameboard. The i] [ﬁ
piece falls, and as it falls the player can = @
rotate the piece and slide it horizontally. pig 1. The tetrominoes Sq (“square”),
It stops falling when it lands on a filled LG (“eft gun”), RG (“right gun”), LS
gridsquare, though the player has a final (“eft snake”), RS (“right snake”), |,
opportunity to slide or rotate it before it and T, with each piece’s center marked.
stops moving permanently. If, when the piece comes to rest, all gridsquares in
an entire row h of the gameboard are filled, row h is cleared: all rows above h
fall one row lower, and the top row of the gameboard is replaced by an entirely
unfilled row. As soon as a piece is fixed in place, the next piece appears at the
top of the gameboard. To assist the player, typically a one-piece lookahead is
provided—when the ith piece begins falling, the identity of the (i + 1)st piece is
revealed.

A player loses when a new piece is blocked from entirely entering the game-
board by filled gridsquares. Normally, the player can never win a Tetris game,
since pieces continue to be generated until the player loses. Thus the player’s
objective is to maximize his or her score (which increases as pieces are placed
and as rows are cleared).

Our results. In this paper, we introduce the natural full-information (offline)
version of Tetris: we have a deterministic, finite piece sequence, and the player
knows the identity and order of all pieces that will be presented. (Games Mag-
azine has posed several Tetris puzzles based on the offline game [9].) We study
the offline version because its hardness captures much of the difficulty of playing
Tetris; intuitively, it is only easier to play Tetris with complete knowledge of the
future, so the difficulty of playing the offline version suggests the difficulty of
playing the online version. It also naturally generalizes the one-piece lookahead
of implemented versions of Tetris.

It is natural to generalize the Tetris gameboard to m-by-n, since a relatively
simple dynamic program solves the m -n = O(1) case in time polynomial in the
number of pieces. Furthermore, in an attempt to consider the inherent difficulty
of the game—and not any accidental difficulty due to the limited reaction time
of the player—we initially allow the player an arbitrary number of shifts and
rotations before the current piece drops by one row. (We restrict to realistic
agility levels later.)

In this paper, we prove that it is NP-complete to optimize any of several nat-
ural objective functions for Tetris: (1) maximizing the number of rows cleared
while playing the given piece sequence; (2) maximizing the number of pieces
placed before a loss occurs; (3) maximizing the number of times a tetris—the
simultaneous clearing of four rows—occurs; and (4) minimizing the height of the
highest filled gridsquare over the course of the sequence. We also prove the ex-
treme inapproximability of the first two (and the most natural) of these objective
functions: given an initial gameboard and a sequence of p pieces, for any constant

e > 0, it is NP-hard to approximate to within a factor of p'~¢ the maximum
number of pieces that can be placed without a loss, or the maximum number of
rows that can be cleared. We also show that it is NP-hard to approximate the
minimum height of the highest filled gridsquare to within a factor of 2 — e.

To prove these results, we first show that the cleared-row maximization prob-
lem is NP-hard, and then give extensions of our reduction for the remaining ob-
jectives. Our initial proof of hardness proceeds by a reduction from 3-PARTITION,
in which we are given a set S of 3s integers and a bound 7', and asked to parti-
tion S into s sets of three numbers each so that the sum of the numbers in each
set is exactly T'. Intuitively, we define an initial gameboard that forces pieces
to be placed into s piles, and give a sequence of pieces so that all of the pieces
associated with each integer must be placed into the same pile. The player can
clear all rows of the gameboard if and only if all s of these piles have the same
height. A key difficulty in our reduction is that there are only a constant num-
ber of piece types, so any interesting component of a desired NP-hard problem
instance must be encoded by a sequence of multiple pieces. The bulk of our
proof of correctness is devoted to showing that, despite the decoupled nature of
a sequence of Tetris pieces, the only way to possibly clear the entire gameboard
is to place in a single pile all pieces associated with a particular integer.

Our reduction is robust to a wide variety of modifications to the rules of the
game. In particular, our results continue to hold in the following settings: (1) with
restricted player agility—allowing only two rotation/translation moves before
each piece drops in height; (2) under a wide variety of different rotation models—
including the somewhat non-intuitive model that we have observed in real Tetris
implementations; (3) without any losses—i.e., with an infinitely tall gameboard;
and (4) when the pieceset is restricted to {LG, LS, I,Sq} or {RG,RS,|,Sq}, plus
at least one other piece.

Related work: Tetris. This paper is, to the best of our knowledge, the first
consideration of the complexity of playing Tetris. Kostreva and Hartman [10]
consider Tetris from a control-theoretic perspective, using dynamic programming
to choose the “optimal” move, using a heuristic measure of configuration quality.
Other previous work has concentrated on the possibility of a perpetual loss-
avoiding strategy in the online, infinite version of the game. In other words,
under what circumstances can the player be forced to lose, and how quickly?
Brzustowski [2] has characterized all one-piece (and some two-piece) piecesets
for which there are perpetual loss-avoiding strategies. He has also shown that,
if the machine can adversarially choose the next piece (following the lookahead
piece) in reaction to the player’s moves, then the machine can force an eventual
loss using any pieceset containing {LS,RS}. Burgiel [3] has strengthened this
result, showing that an alternating sequence of LS’s and RS’s will eventually
cause a loss in any gameboard of width 2n for odd n, regardless of the player’s
strategy. This implies that, if pieces are chosen independently at random with
non-zero probability mass on both LS and RS, there is a forced eventual loss
with probability one.

Recently, Breukelaar, Hoogeboom, and Kosters [1] have given a significant
simplification of our reduction and proof of the NP-hardness of maximizing the
number of rows cleared in a Tetris game. By using a more restrictive construction
to limit piece placement, they are able to give a much shorter proof that all pieces
associated with a particular integer must be placed in the same pile. (They have
many fewer cases to consider.) The extensions to our reduction that we present
in Sections 4, 5, and 6 can also be applied to their reduction to achieve the same
results regarding different rules/objectives and inapproximability.

Related work: other games and puzzles. A number of other popular one-player
computer games have recently been proven to be NP-hard, most notably the
game of Minesweeper [8]—or, more precisely, the Minesweeper “consistency”
problem. See the survey of the first author [4] for a summary of other games and
puzzles that have been studied from the perspective of computational complexity.
These results form the emerging area of algorithmic combinatorial game theory,
in which many new results have been established in the past few years, e.g.,
Zwick’s positive results on optimal strategies for the two-player block-stacking
game Jenga [14].

2 Rules of Tetris

Here we rigorously define the game of Tetris, formalizing the intuition of the
previous section. For concreteness, we have chosen to give very specific rules,
but in fact the remainder of this paper is robust to a variety of modifications to
these rules; in Section 6, we will discuss some variations on these rules for which
our results still apply.

The gameboard is a grid of m rows and n columns, indexed from bottom-to-
top and left-to-right. The (i, j)th gridsquare is either unfilled (open, unoccupied)
or filled (occupied). In a legal gameboard, no row is completely filled, and there
are no completely empty rows that lie below any filled gridsquare. When de-
termining the legality of certain moves, we consider all gridsquares outside the
gameboard as always-occupied sentinels.

The seven Tetris pieces are exactly those connected rectilinear polygons that
can be created by assembling four 1-by-1 gridsquares. The center of each piece
is shown in Figure 1. A piece state P = (t,0,(i,j), f) consists of: (1) a piece
type t € {Sq,LG,RG,LS,RS,I,T}; (2) an orientation o € {0°,90°,180°,270°},
the number of degrees clockwise from the piece’s base orientation (shown in
Figure 1); (3) a position (i,j) € {1,...,m} x {1,...n} of the piece’s center on
the gameboard; and (4) the value f € {fized, unfized}, indicating whether the
piece can continue to move. (The position of a Sq is the location of the upper-left
gridsquare of the Sq, since its center falls on the boundary of four gridsquares
rather than in the interior of one.) In an initial piece state, the piece is in its
base orientation, and the initial position places the highest gridsquares of the
piece into row m, and the center into column |[n/2], and the piece is unfixed.

For now, rotations will follow the instantaneous rotation model. (We discuss
other rotation models in Section 6.) For a piece state P = (¢, 0, (3, j), unfized), a

gameboard B, and a rotation angle § = +90°, the rotated piece state R(P,0, B)
is {t, (o +) mod 360°, (i, j), unfized) as long as all the gridsquares occupied by
the rotated piece are unoccupied in B; if some of these gridsquares are full in B
then R(P, 60, B) = P and the rotation is illegal.

Playing the game. No moves are legal for a piece P = (t,0, (i,), fired). The
following moves are legal for a piece P = (t,0,(i,J), unfived), with current
gameboard B: (1) a rotation, resulting in the piece state R(P,£90°, B); (2)
a translation, resulting in the piece state (t,0,(i,j £ 1), unfized), if the grid-
squares adjacent to P are open in Bj; (3) a drop, resulting in the piece state
(t,0,{i—1,7), unfized), if all the gridsquares beneath P are open in B; and (4) a
fiz, resulting in (¢, o, (i, J), fized), if at least one gridsquare below P is occupied in
B. A trajectory o of a piece P is a sequence of legal moves starting from an initial
state and ending with a fix move. The result of this trajectory on gameboard B
is a new gameboard B’, as follows:

1. The new gameboard B’ is initially B with the gridsquares of P filled.

2. If the piece is fixed so that, for some row r, every gridsquare in row r of B’
is full, then row r is cleared. For each v’ > r, replace row r’ of B’ by row
' +1 of B’. Row m of B’ is an empty row. Multiple rows may be cleared by
the fixing of a single piece.

3. If the next piece’s initial state is blocked in B’, the game ends and the player
loses.

For a game (By, P, ..., Ppy), a trajectory sequence X' is a sequence By, o1, B, . . .,
op, Bp so that, for each 7, the trajectory o; for piece P; on gameboard B;_; results
in gameboard B;. However, if there is a losing move o, for some ¢ < p then the
sequence Y terminates at B, instead of B,,.

The Tetris problem. For concreteness, we will focus our attention on the fol-
lowing TETRIS problem: given a Tetris game G = (B, P1, P, ..., P,), does there
exist a trajectory sequence X that clears the entire gameboard of G7 (We will
consider other Tetris objectives in Section 4.) Membership of TETRIS in NP
follows straightforwardly.

3 NP-completeness of Tetris

We define a mapping from instances of 3-PARTITION [7, p. 224] to instances of
TETRIS. Recall the 3-PARTITION problem:

Given: A sequence ay,...,ass of non-negative integers and a non-negative inte-
ger T, so that T/4 < a; < T/2 for all 1 <i < 3s and so that Zf’il a; = sT.

Output: Can {1,...,3s} be partitioned into s disjoint subsets Aj,..., As so
that, for all 1 < j < s, we have ZieAj a; =17

We choose to reduce from 3-PARTITION because it is NP-hard to solve this
problem even if the inputs a; and T are provided in unary:

Theorem 1 (Garey and Johnson [6]). 3-PARTITION is NP-complete in the
strong sense. O

Given an arbitrary instance P = {aq,...,ass,T) of 3-PARTITION, we will pro-
duce a Tetris game G(P) whose gameboard can be completely cleared precisely
if P is a “yes” instance. (For brevity, we omit some details; see [5].)

The initial gameboard is shown in
Figure 2. The topmost 3s + O(1) rows
form an empty staging area for rota-
tions and translations. Below, there are
= s buckets, each six columns wide, corre-
sponding to the sets Ay, ..., A for the
instance of 3-PARTITION. Each bucket
has unfilled notches in its fourth and
fifth columns in every sixth row, begin-
ning in the fifth row. The first four rows
of the first and second columns in each
bucket are initially filled, and the sixth
column of each bucket is entirely filled.
The last three columns of the game-
T T T T board form a lock, blocking access to
the last column, which is unfilled in
all rows but the second-highest. Until
Fig. 2. The initial gameboard for a Tetris 4 piece is placed into the lock to clear
game mapped from an instance of 3- the top two rows, no lower rows can be
PARTITION. cleared.

The piece sequence consists of the following sequence of pieces for each
ai,...,ass: one initiator (I,LG,Sq), then a; repetitions of the filler (LG, LS, LG,
LG,Sq), and then one terminator (Sq,Sq). After the pieces associated with
ai,...,a3s, we have the following additional pieces: s successive I’s, one RG,
and 37'/2+ 5 successive I's. (Without loss of generality, we can assume 7 is even
by multiplying all input numbers by two.)

The TETRIS instance G(P) has size polynomial in the size of the 3-PARTITION
instance P, since a1,...,a3s and T are represented in unary, and can be con-
structed in polynomial time.

3s+0(1)

67 + 22

65+ 3

Lemma 2 (Completeness). For any “yes” instance P of 3-PARTITION, there
is a trajectory sequence X that clears the entire gameboard of G(P) without
triggering a loss.

Proof. In Figure 3, we show how to place all of the pieces associated with the
number a; in a bucket. Since P is a “yes” instance, there is a partitioning of
{1,...,3s} into sets Aj,..., A so that ZieAj a; = T. Place all pieces asso-
ciated with each ¢ € A; into the jth bucket of the gameboard. This yields a
configuration in which only the last four rows of the third column of each bucket
are unfilled. Next we place one of the s successive I’s into each bucket, and
the RG into the lock; the first two rows are then cleared. Finally, we place the

initiator filler, filler, ..., filler terminator

Fig. 3. A valid sequence of moves within a bucket.

3T /2 + 5 successive I’s into the last column. Each of the I’s clears four rows; in
total, this clears the entire gameboard. O

The proof of soundness is somewhat more involved; here we give a high-level
summary and some suggestive details only. Call a trajec-
tory sequence walid if it completely clears the gameboard
of G(P), and call a bucket unfillable if it is impossible to
fill all of the empty gridsquares in it using arbitrarily many
pieces from the set {LG, LS, Sq,|}. Also, we say that a con-

figuration with all buckets as in Figure 4 is unprepped. Fig. 4.

Unprepped buckets.
Proposition 3. In any valid trajectory sequence:

1. no gridsquare above row 6T + 22 is ever filled;

2. all gridsquares of all pieces preceding the RG must all be placed into buckets,

filling all empty bucket gridsquares;

no rows are cleared before the RG in the sequence;

4. all gridsquares of all pieces starting with (and including) the RG must be

placed into the lock columns, filling all empty lock gridsquares;

no configuration with an unfillable bucket arises.

6. in an unprepped configuration, all pieces in the sequence |, LG, Sq,r X (LG, LS,
LG, LG, Sq), Sq,Sq, for anyr > 1, must be placed into a single bucket, yielding
an unprepped configuration.

o

&

Proof. For (1), there are only enough pieces to fill and clear the gameboard if
every filled gridsquare (from the initial gameboard or from pieces in the sequence)
is placed into the lowest 67" + 22 rows. For (2) and (3), placing any piece other
than RG as the first piece to enter the lock columns violates (1), and no row can
be cleared until some piece enters the lock. We have (4) from (1,2) and the fact
that there are exactly as many gridsquares following the RG as there are empty
gridsquares in the lock columuns. Finally, (5) follows immediately from (2,3).
The (tedious) details for (6) can be found in [5]; here we give a high-level
overview. Call a trajectory sequence deviating if it does not place all the pieces
into the same bucket to yield an unprepped configuration. We first catalogue
ten different classes of buckets that we show to be unfillable. (For example, a
bucket with a disconnected region of unfilled gridsquares is unfillable.) We then

exhaustively consider the tree of all possible placements of the pieces in the given
sequence into the gameboard, and show that an unfillable bucket is produced
by every deviating trajectory sequence. The overwhelming majority of deviating
trajectory sequences create an unfillable bucket with their first deviating move,
while some do not create an unfillable bucket until up to five pieces later. O

Lemma 4 (Soundness). If there is a valid trajectory sequence for G(P), then
P is a “yes” instance of 3-PARTITION.

Proof. If there is a valid strategy for G(P), then by Proposition 3.2, there is
a way of placing all pieces preceding the RG to exactly fill the buckets. By
Proposition 3.6, we must place all of the pieces associated with a; into the same
bucket; by Proposition 3.1, we must have exactly the same number of filled
gridsquares in each bucket. Define A; := {i : all the pieces associated with a; are
placed into bucket j}. The total number of gridsquares placed into each bucket
is the same; because every a; € (T7'/4,7/2), we have that cach |A;| = 3. Thus
the A;’s form a legal 3-partition, and P is a “yes” instance. O

Theorem 5. Mazimizing the number of rows cleared in a Tetris game is NP-
complete. O

4 NP-hardness for Other Objectives

In this section, we sketch reductions extending that of Section 3 to establish
the hardness of optimizing several other natural Tetris objectives. It is easy to
confirm that TETRIS remains in NP for all objectives considered below.

Theorem 6. Mazimizing the number of tetrises (the number of times that four
rows are cleared simultaneously) in a Tetris game is NP-complete.

Proof. Our gameboard, shown in Figure 5, is augmented with four new bottom
rows that are full in all but the sixth column. We

append a single | to our previous piece sequence. For

a “yes” instance of 3-PARTITION, (67 + 20)/4 + 1

tetrises are achievable. For a “no” instance, we can-

not clear the top 67 + 22 rows using the original

pieces and thus we clear at most 67"+ 22 total rows. I

This implies that there were at most (67" + 20)/4 <
(6T 4+ 20)/4 + 1 tetrises. (Recall T is even.) There-
fore we can achieve (6T +24)/4 tetrises exactly when
the top 67 + 22 rows exactly when the 3-PARTITION
instance is a “yes” instance. O

Fig. 5. Gameboard for the
hardness of maximizing
tetrises.

A different type of objective—considered by Brzustowski [2] and Burgiel [3],
for example—is that of survival. How many pieces can be placed before a loss
must occur? Our original reduction yields some initial intuition on the hardness
of maximizing lifetime. In the “yes” case of 3-PARTITION, there is a trajectory
sequence that fills no gridsquares above the (67" + 22)nd row, while in the “no”
case we must fill some gridsquare in the (67" + 23)rd row:

Theorem 7. Minimizing the maximum height of a filled gridsquare in a Tetris
game is NP-complete. O

However, this does not imply the hardness of
maximizing the number of pieces that can be
placed without losing, because Theorem 7 only
applies for certain heights—and, in particular,
does not apply for height m, because the tra-
jectory sequence from Lemma 2 requires space
above the (67 + 22)nd row for rotations and
translations. To show the hardness of maximiz-
ing survival time, we need to do some more work.

ol

Theorem 8. Mazimizing the number of pieces
placed without losing is NP-complete.

Proof. We augment our previous reduction as
shown in Figure 6. We have created a large reser-
voir of r rows filled only in the first column, and
a second lock in four new columns, which pre-
vents access to the reservoir until all the top rows are cleared. We append to
our piece sequence a single RG (to open the lock) and enough Sq’s to completely
fill the reservoir. Choose 7 so that the unfilled area R of the reservoir is more
than twice the total area A of the remainder of the gameboard. Observe that the
gameboard has odd width, so the unfilled block of the reservoir has even width.

In the “yes” case of 3-PARTITION, we can clear the top part of the gameboard
as before, then open the lock using the RG, and then completely fill and clear
the reservoir using the Sq’s.

In the “no” case, we cannot entirely clear the top part, and thus cannot
unlock the reservoir with the RG. No number of the Sq’s can ever subsequently
clear the lower lock row. We claim that a loss will occur before all of the Sq’s are
placed. There are an odd number of columns, so only rows that initially contain
an odd number of filled gridsquares can be cleared by the Sq’s. Thus each row
in the top of the gameboard can be cleared at most once; this uses fewer than
half of the Sq’s. The remainder of the Sq’s cover R/2 > A area, and never clear
rows. Thus they must cause a loss. O

Fig. 6. Gameboard for hardness
of maximizing survival time.

5 Hardness of Approximation

Theorem 9. Given a game consisting of p pieces, approximating the maximum
number of rows that can be cleared to within a factor of p*~= for any constant
e > 0 is NP-hard.

Proof. Our construction is as in Figure 6, with r > a?/¢ rows in the reservoir,

where there are a total rows at or above the second lock. As before, we append to
the original piece sequence one RG followed by exactly enough Sq’s to completely

fill the reservoir. As in Theorem 8, in the “yes” case of 3-PARTITION, we can
clear the entire gameboard (including the r rows of the reservoir), while in the
“no” case case we can clear at most a rows. Thus it is NP-hard to distinguish
the case in which at least r rows can be cleared from the case in which at most
a < /% rows can be cleared.

Note that the number of columns ¢ in our gameboard is fixed and independent
of r, and that the number of pieces in the sequence is constrained by r < p <
(r+a)c. We also require that r be large enough that p < (r+a)c < r?/(2=¢)_ (Note
that r, and thus our game, is still polynomial in the size of the 3-PARTITION
instance.) Thus in the “yes” case we clear at least r > p' /2 rows, and in the
“no” case we clear at most a < r/? < p¥/2. Thus it is NP-hard to approximate
the number of cleared rows to within a factor of (p'=¢/2)/(p*/?) = p'—=. O

Using the construction in Figure 6 (with appropriate choice of r), similar argu-
ments yield the following inapproximability results [5]:

Theorem 10. Given a game consisting of p pieces, approximating the maximum
number of pieces that can be placed without a loss to within a factor of p1=¢ for
any constant € > 0 is NP-hard. O

Theorem 11. Given a game consisting of p pieces, approximating the minimum
height of the highest filled gridsquare to within a factor of 2 —¢ for any constant
€ >0 is NP-hard. O

6 Varying the Rules of Tetris

Because the completeness of our reduction does not depend on the full set of
allowable moves in Tetris—nor soundness on all limitations—our results continue
to hold in some modified settings.

In real implementations of Tetris, there is a fixed amount of time (varying
with the difficulty level) in which to make manipulations at height h. We consider
players with limited dexterity, who can only make a small number of translations
and rotations before the piece drops another row.

We defined a loss as the fixing of a piece so that it does not fit entirely within
the gameboard. Other models also make sense: e.g., we might define a loss as
occurring only after rows have been cleared—that is, a piece can be fixed so that
it extends into the would-be (m + 1)st row of the m-row gameboard, so long as
this is not the case once all filled rows are cleared.

Finally, we consider a broad class of reasonable models for piece rotation.
Three models of particular interest are: (1) the instantaneous model of Section 2;
(2) the continuous (or Euclidean) rotation model—the natural model if one pic-
tures pieces physically rotating in space—which extends the instantaneous model
by requiring that all gridsquares that a piece passes through during its rotation be
unoccupied; and (3) the Tetris rotation model, illustrated in Figure 7, which we
have observed in a number of actual Tetris implementations. In this model, the
position of a piece in a particular orientation is determined as follows: within the

pictured k-by-k square (fixed inde-
pendently of orientation), the piece is ﬂ @
positioned so that the smallest rect- m — E
angle bounding it is centered in the

square, shifted upwards and leftwards <~ E — @
as necessary to align it with the grid. EE
(Incidentally, it took us some time

to realize that the “real” rotation in — Eﬂ — @ —
Tetris did not follow the instantaneous
model, which is intuitively the most — UD — % —

natural one.)

— D —
Fig. 7. The Tetris model of rotation. Each
piece can be rotated clockwise (respectively,

counterclockwise) to yield the configuration
on its right (respectively, left).

Theorem 12. [t remains NP-hard to

optimize (or approximate) the maxi-

mum height of a filled gridsquare or

the number of rows cleared, tetrises at-

tained, or pieces placed without a loss

when any of the following hold:

1. the player is restricted to two rotation/translation moves before each piece
drops in height.

2. pieces are restricted to {LG,LS,1,Sq} or {RG,RS,|,Sq} plus one other piece.

3. losses are not triggered until after filled rows are cleared, or no losses occur
at all. (In the latter case, the objective of Theorem 8 is irrelevant.)

4. rotations follow any reasonable rotation model.

Proof. For (1), note that completeness (Lemma 2) requires only two translations
(to slide a LG into a notch) before the piece falls; soundness (Lemma 4) cannot
be falsified by restricting legal moves. For (2), observe that our reduction uses
only the pieces {LG, LS, |,Sq, RG}. For the other piecesets, we can take the mirror
image of our reduction and/or replace the RG and the lock—our sole requirement
on the lock is that that it be opened by a piece that does not appear elsewhere
in the sequence. Claim (3) follows since we do not depend on the definition of
losses in our proof: the completeness trajectory sequence does not approach the
top of the gameboard, and the proof of soundness relies only on unfillability
(and not on losses). Finally, for (4), our proof of Lemma 4 assumes an arbitrary
reasonable rotation model [5]. Completeness follows even with the reasonability
conditions, since the only rotations required for Lemma 2 occur in the upper
staging area of the gameboard. 0O

7 Future Directions

An essential part of our reduction is a complicated initial gameboard; it is a
major open question whether Tetris can be played efficiently with an empty
initial configuration.

Our results are largely robust to variations on the rules (see Section 6), but
our completeness result relies on the translation of pieces as they fall. At more

difficult levels of the game, it may be very hard to make two translations before
the piece drops another row in height. Suppose each piece can be translated and
rotated as many times as the player pleases, and then falls into place [2]; no
manipulations are allowed after the first downward step. Is the game still hard?

It is also interesting to consider Tetris with gameboards of restricted size.
What is the complexity of Tetris for an m-by-n gameboard with m = O(1) or
n = O(1)? Is Tetris fixed-parameter tractable with respect to either m or n?
(We have polynomial-time algorithms for the special cases in which m - n is
logarithmic in the number of pieces in the sequence, or for the case of n = 2.)

We have reduced the pieceset down to five of the seven pieces. For what piece-
sets is Tetris polynomial-time solvable? (E.g., the pieceset {I} seems polynomially
solvable, though non-trivial because of the initial partially filled gameboard.)

Finally, in this paper we have concentrated our efforts on the offline, adver-
sarial version of Tetris. In a real Tetris game, the initial gameboard and piece
sequence are generated probabilistically, and the pieces are presented in an online
fashion. What can be said about the difficulty of playing online Tetris if pieces
are generated independently at random according to the uniform distribution,
and the initial gameboard is randomly generated? Some possible directions for
this type of question have been considered by Papadimitriou [11].

Acknowledgments. We would like to thank Amos Fiat and Ming-wei Wang for
helpful initial discussions, Chris Peikert for comments on an earlier draft, and
Josh Tauber for pointing out the puzzles in Games Magazine [9]. This work was
partially supported by NDSEG and NSF Graduate Research Fellowships.

References

1. R. Breukelaar, H. J. Hoogeboom, and W. A. Kosters. Tetris is hard, made easy.
Technical report, Leiden Institute of Advanced Computer Science, 2003.

2. J. Brzustowski. Can you win at Tetris? Master’s thesis, U. British Columbia, 1992.

3. H. Burgiel. How to lose at Tetris. Mathematical Gazette, July 1997.

4. E. D. Demaine. Playing games with algorithms: Algorithmic combinatorial game
theory. In Proc. MFCS, pages 18-32, August 2001. cs.CC/0106019.

5. E. D. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even to
approximate. Technical Report MIT-LCS-TR-865, 2002. cc.CC/0210020.

6. M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput., 4:397-411, 1975.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

8. R. Kaye. Minesweeper is NP-Complete. Math. Intelligencer, 22(2):9-15, 2000.

9. S. Kim. Tetris unplugged. Games Magazine, pages 66—67, July 2002.

10. M. M. Kostreva and R. Hartman. Multiple objective solution for Tetris. Technical
Report 670, Department of Mathematical Sciences, Clemson U., May 1999.

11. C. Papadimitriou. Games against nature. J. Comp. Sys. Sci., 31:288-301, 1985.

12. D. Sheff. Game Over: Nintendo’s Battle to Dominate an Industry. Hodder and
Stoughton, London, 1993.

13. Tetris, Inc. http://www.tetris.com.

14. U. Zwick. Jenga. In Proc. SODA, pages 243-246, 2002.

